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Covariational reasoning is a challenging form of reasoning for undergraduate students to 
develop and employ. Yet, students’ lack of opportunities to use covariational reasoning may 
account, in part, for some of their difficulties. Building from the work of mathematics education 
researchers (e.g., Kaput, Thompson, Moore), we developed a suite of Techtivities—free, 
accessible, digital media activities linking dynamic animations and graphs. Using a Cannon 
Man Techtivity to illustrate, we provide four key design components and three theoretically 
based design principles underlying the Techtivities. To inform design both within and across the 
Techtivities, we network theories of different grain sizes: Thompson’s theory of quantitative 
reasoning and Marton’s variation theory. Developing Techtivities for students in the gatekeeping 
course, College Algebra, we intend to expand students’ opportunities to employ covariational 
reasoning. We discuss implications stemming from students’ opportunities to use free, accessible 
digital media activites, such as Techtivities, to promote their covariational reasoning. 
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Covariational reasoning is a critical form of mathematical reasoning imperative for students’ 
understanding of key concepts of introductory college level mathematics such as functions, rates, 
and graphs (Thompson & Carlson, 2017). At its core, covariational reasoning entails a twofold 
conception: conceiving of attributes as capable of varying and possible to measure, then 
conceiving of a relationship between those attributes (Carlson, Jacobs, Coe, Larson, & Hsu, 
2002; Thompson & Carlson, 2017). By investigating situations involving multiple changing 
attributes, students can have opportunities to employ covariational reasoning (e.g., Moore, 
Stevens, Paoletti, & Hobson, 2016; Johnson, McClintock, & Hornbein, 2017; Thompson & 
Carlson, 2017). For example, students might investigate a Cannon Man situation, in which a 
person is ejected into the air, then falls down to the ground with the help of a parachute. In this 
situation, students employing covariational reasoning could conceive of two possible attributes 
as capable of varying and possible to measure: Cannon Man’s height from the ground and 
Cannon Man’s total distance traveled while in the air. Students could then conceive of a 
relationship between Cannon Man’s height from the ground and total distance traveled. 

Building from the work of mathematics education researchers (e.g., Kaput, Thompson, 
Moore), we developed a suite of Techtivities—free, accessible, digital media activities linking 
dynamic animations and graphs. We designed the Techtivities for students in College Algebra, 
an introductory course that can serve as a gatekeeper for many students (e.g., Gordon, 2008; 
Herriot & Dunbar, 2009). Using a Cannon Man Techtivity to illustrate, we provide four key 
design components and three theoretically based design principles underlying the Techtivities. 
Networking theories of different grain sizes—Thompson’s theory of quantitative reasoning 
(1993, 1994, 2002, 2011) and Marton’s variation theory (2015)—we designed both within and 
across the Techtivities. By designing the Techtivities in Desmos (www.desmos.com), we 
increase accessibility, and thereby expand students’ opportunities to employ covariational 
reasoning. We conclude with implications for students’ use of Techtivities to promote their 
covariational reasoning and for the networking of theories to design digital media activities. 
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Background 
Despite the importance of covariational reasoning, researchers have documented challenges 

that undergraduate university students enrolled in calculus and trigonometry courses face when 
encountering situations calling for covariational reasoning (e.g., Carlson et al., 2002; Oehrtman, 
Carlson, & Thompson, 2008; Moore, 2014; Moore & Carlson, 2012; Moore, Paoletti, & 
Musgrave, 2013). Broadly, undergraduate students have difficulty using covariational reasoning 
to make sense of situations involving variation in change that occurs in a single direction, such as 
a temperature increasing at a decreasing rate (e.g., Carlson et al., 2002; Oehrtman et al., 2008). In 
addition, students’ impoverished conceptions of the “things” that are changing may decrease 
their likelihood for covariational reasoning (Moore, 2014; Moore & Carlson, 2012). 
Furthermore, students’ lack of covariational reasoning can impact their ability to view graphs as 
representing relationships between quantities (Moore & Thompson, 2015; Moore, Stevens, 
Paoletti, & Hobson, 2016). 

Through their programs of research, Thompson and Carlson, together with colleagues, have 
developed and implemented innovative learning materials to provide opportunities for university 
students in Calculus and Precalculus to employ covariational reasoning (e.g., Carlson et al., 
2002; Carlson, Oehrtman, & Engelke, 2010; Carlson, Oehrtman, & Moore, 2010; Thompson & 
Ashbrook, 2016a; Thompson & Carlson, 2017). In a PreCalculus course designed to foster 
university students’ covariational reasoning, students encountered instructional tasks designed to 
provide students opportunities to conceive of change in attributes prior to determining numerical 
amounts of change (Thompson & Carlson, 2017). In their online Conceptual Calculus textbook, 
Thompson & Ashbrook (2016a) included a task situation involving a droplet of water landing 
into a bowl of water and creating circular ripples that increase in size (Thompson & Ashbrook, 
2016b). We view this situation as having potential to serve as background for a task requiring 
students to conceive of and represent change in the area and radius of the ripples. Overall, the 
research programs of Thompson and Carlson have resulted in opportunities for university 
students to use innovative learning materials designed to promote covariational reasoning. Yet, 
we argue that there is room for the development of more accessible and multimodal learning 
materials, so as to provide digital media that broadens access and learning opportunities to an 
even wider range of students. 

An Approach to Technology Development and Use for Greater Access and Participation 
By developing a suite of Techtivities in Desmos, we increase accessibility and opportunities 

for participation in multiple ways: across operating system platforms (Apple OS, Microsoft 
Windows), across various browsers (i.e., Google Chrome, Mozilla Firefox, Microsoft Edge), via 
mobile devices (Desmos is compatible with iOS and Android), and as an app extension via 
Google’s Chrome browser (Desmos has 2.8 million app installations within Chrome). 
Furthermore, Desmos has low barriers to entry and initial use, which afford more expansive 
opportunities for student participation. Specifically, learner use of Desmos begins in just a few 
clicks via a web browser or mobile platform; supports learning in over two dozen languages; 
complies with WCAG 2.0 accessibility standards for learners who may be blind or visually 
impaired, with screen reader capability on both web-based and mobile platforms; includes 
authenticated sign in with Google credentials; and incorporates a robust set of web tutorials on 
Youtube (over a quarter million views). We have intentionally partnered with Desmos because 
the development and use of each Techtivity will maintain these technical features for greater 
access and participation, and also align all Techtivities with the broader “ecosystem” of Desmos 
users, social media networks, technical supports, and complementary resources. 
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Networking Theories to Design Techtivities 
Rasmussen and Wawro (2017) called for researchers investigating research problems in 

undergraduate mathematics education to network theories, thereby providing new lenses and 
tools to study the complexities of learning and teaching mathematics. By networking theories of 
different grain sizes to design the Techtivities, we respond to the call put forth by Rasmussen and 
Wawro (2017). Watson (2016) articulated three different grain sizes of theories: grand theories 
(e.g., Piaget’s constructivist theory), intermediate theories (e.g., Marton’s variation theory), and 
domain specific/local theories (e.g., Thompson’s theory of quantitative reasoning). Following 
Johnson and colleagues (Johnson, McClintock, Hornbein, Gardner, and Grieser, 2017; Johnson 
& McClintock, in press), we networked Thompson’s theory of quantitative reasoning and 
Marton’s variation theory to design both within and across the Techtivities. 

Thompson’s Theory of Quantitative Reasoning 
In explicating a theory of quantitative reasoning (e.g., Thompson 1993; 1994; 2002; 2011), 

Thompson employed a constructivist perspective. Thompson’s theory of quantitative reasoning 
focuses on students’ mental operations, which individuals can enact in thought as well as action 
(e.g., Piaget, 1970, 1985). Drawing on Thompson’s theory of quantitative reasoning, by quantity 
we mean how students conceive of the possibility of measuring some attribute. For example, a 
student might conceive of using a fixed distance between her thumb and forefinger to measure 
Cannon Man’s height from the ground. Thompson’s theory of quantitative reasoning undergirds 
our perspective on covariational reasoning.  

Following Thompson and Carlson (2017), we argue that covariational reasoning entails at 
least four different kinds of mental operations: students’ conceptions of attributes as being 
possible to measure (quantitative reasoning), students’ conceptions of attributes as being capable 
of varying, students’ conceptions of a relationship between attributes capable of varying and 
possible to measure, and students’ images of change. Thompson, Hatfield, Yoon, Joshua, and 
Byerly (2017) built on Saldanha & Thompson’s (1998) term, multiplicative object, to specify a 
conception of a relationship between attributes capable of varying and possible to measure. A 
student conceiving of a relationship between attributes as a multiplicative object can 
conceptualize a new attribute, which coordinates the constituent attributes (Saldanha & 
Thompson, 1998; Thompson et al., 2017). For example, a student could conceive of a new 
attribute, coordinating Cannon Man’s height from the ground and total distance traveled at every 
value of height and distance. By images of change, we mean more than a mental picture, we 
mean students’ mental operations (see also Thompson, 1996). Castillo-Garsow, Johnson, & 
Moore (2013) posited two contrasting images of change: chunky and smooth. A smooth image of 
change refers to a conception of change as occurring in progress. A chunky image of change 
refers to a conception of change as having occurred in particular increments. For example, a 
student might conceive of Cannon Man’s height as changing continually (smooth image of 
change) or as having changed to reach a certain amount (chunky image of change). Students’ use 
of smooth images of change correlates to more advanced levels of covariational reasoning 
(Thompson & Carlson, 2017). Researchers have argued for the utility of students’ smooth 
images of change (e.g., Castillo-Garsow et al., 2013), reporting case studies to demonstrate that 
utility for both undergraduate and high school students (e.g., Johnson, 2012; Moore, 2014). 

Marton’s Variation Theory 
We used Marton’s (2015) variation theory to guide design across the Techtivities. Broadly, 

Marton (2015) argued that instructional designers should develop task sequences that provide 
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students opportunities to discern critical aspects (Marton, 2015). When interacting with the 
Techtivities, we view covariation to be a critical aspect for students to discern. Furthermore, 
covariation is a critical aspect comprised of interrelated aspects. For critical aspects comprised of 
interrelated aspects, Marton (2015) recommended that task sequences first include variation and 
invariance in each interrelated aspect, then variation in both aspects. To discern covariation, 
students need to conceive of two constituent attributes as capable of varying and possible to 
measure, as well as a relationship between those attributes. Consequently, in designing the 
Techtivities, we first included variation and invariance in each constituent attribute, then 
variation in both attributes.  

Networking Theories to Move Beyond Existing Theoretical Perspectives 
Networking theories can take different forms. We network Thompson’s theory of 

quantitative reasoning and Marton’s variation theory to design both within and across the 
Techtivities. To design within each Techtivity, we drew on Thompson’s theory of quantitative 
reasoning to inform our selection of different attributes to use and to inform our design to 
promote students’ use of smooth images of change. To design across the Techtivities, we drew 
on Marton’s variation theory to include variation and invariance in the type and representation of 
constituent attributes, then variation in both attributes.  

For the purposes of designing the Techtivities, we view Thompson’s theory of quantitative 
reasoning and Marton’s variation theory to complement, rather than to compete, with each other. 
From a constructivist perspective, we do not assume that covariation is something that is “out 
there” for students to notice (see also Johnson, McClintock, Hornbein, et al., 2017). From a 
variation theory perspective, Marton (2015) asserted that researchers should not assume that 
students already attend to the critical aspect prior to encountering a task sequence. We concur 
with Marton (2015), as we do not assume that students already attend to covariation prior to 
encountering the task sequence. Furthermore, in the design of the Techtivities, the critical aspect 
for students to discern—covariation—is a conception (see also Johnson, McClintock, Hornbein, 
et al., 2017). By discernment, we mean students’ engagement in mental operations entailed in 
covariational reasoning. In the next section, we articulate four key design components, 
encompassing design decisions both within and across the Techtivities.  

Four Key Design Components of Each Techtivity 
Building from the work of mathematics education researchers (e.g., Kaput & Roschelle, 

1999; Moore et al., 2013; Moore et al., 2016; Saldanha & Thompson, 1998; Thompson, 2002; 
Thompson, Byerly, & Hatfield, 2013) we provide four key design components of each 
Techtivity. In explicating these components, we expand on Johnson’s previous task design 
research (2013, 2015). Furthermore, we find our design components to be complementary to the 
task sequence reported by Moore et al. (2016). In their task sequence, Moore et al. (2016) began 
first by providing students with a video or animation depicting changing attributes; second, they 
prompted students to sketch a graph showing a relationship, and third, they prompted students to 
sketch a second graph, containing either the same or similar attributes. Furthermore, Moore et al. 
(2016) recommended that tasks not include numerical amounts, concurrent with Johnson’s 
(2013, 2015) recommendations. In our design components, we adapt and expand on the task 
sequence reported by Moore et al. (2016). We include opportunities for students to vary 
individual attributes, and we constrain the attributes in the second graph, such that those 
attributes are the same as the attributes in the first graph. 
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Dynamic Animations of Situations Involving Changing Attributes  
Johnson, McClintock, and Hornbein (2017) articulated a need for task designers to take into 

account the types of attributes included in tasks. In the suite of Techtivities, we intended to select 
attributes that we thought students may more readily conceive of as measurable. Furthermore, 
alongside the animation, we identify attributes which will serve as the focus of the Techtivity 
(Figure 1). We use an animation in part to provide students opportunities to conceive of 
attributes in the process of changing, or put another way, to use smooth images of change.  

 
Figure 1. Cannon man animation  

Cartesian Graphs Containing Dynamic Segments on the Axes 
It is useful for students to use their fingers as tools to represent variation in individual 

attributes (Thompson, 2002). Through the dynamic segments on each axis (Figure 2, left), we 
provide students opportunities to use digital media to represent variation in individual attributes. 
We include freely stretching segments and avoid using numerical amounts to foster students’ use 
of smooth images of change.   

 

  
Figure 2. Dynamic segments (left). Graphs varying representation of the same attributes (right).  

Opportunities to Sketch a Cartesian Graph after Varying Individual Attributes  
Johnson (2015) showed that students’ opportunities to conceive of variation in individual 

attributes impacted their conceptions of covariation. In each Techtivity, after varying individual 
attributes, students have the opportunity to sketch a Cartesian graph. When working to sketch the 
graph, students may replay the animation. To sketch a graph, students may select between two 
digital tools: a free-form pencil or a line segment. 

Variation in Representation of Attributes 
Students may find it challenging to conceive of graphs as representing relationships between 

attributes (Moore & Thompson, 2015; Moore et al., 2016). We incorporated Cartesian graphs 
that represented the same attributes in different ways (Figure 2, right). In so doing, we intended 
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to provide students opportunities to conceive of graphs as representing relationships, rather than 
forming a particular type of shape (See also Moore & Thompson, 2015).  

A Blueprint for a Techtivity 
Each Techtivity consists of a series of screens, which students move through in a particular 

order. Table 1 provides a blueprint for a Techtivity. First, students watch an animation of a 
situation involving changing attributes (Table 1, Item 1). Second, students move dynamic 
segments to represent change in each attribute. After moving segments, students view the 
dynamic segments changing together, appearing in conjunction with the animation (Table 1, 
Items 2-4). Third, students sketch a Cartesian graph representing how both attributes are 
changing together. After sketching a graph, students view a computer generated graph, appearing 
in conjunction with an animation (Table 1, Items 5-6). Fourth, students answer a reflection 
question (Table 1, Item 7). Fifth, students repeat the process for a new Cartesian graph 
representing the same situation, with attributes on different axes (Table 1, Item 8). 

Table 1. A Blueprint for a Techtivity 

A Blueprint for a Techtivity 

1. View animation of a situation involving changing attributes. Identify the changing attributes on 
which to focus in this situation. 

2. Move a dynamic segment to show how one attribute is changing. 
3. Move a second dynamic segment to show how the other attribute is changing.  
4. View both dynamic segments changing together, appearing in conjunction with an animation. 

(In 2-4, dynamic segments are located on horizontal or vertical axes on a Cartesian Plane.) 
5. Sketch a Cartesian graph representing how both attributes are changing together. 
6. View a computer-generated Cartesian graph, appearing in conjunction with an animation. 
7. Reflect on an aspect of the Cartesian graph. For example, is the graph what you expected? Is 

there anything about the graph that surprises you? Why might it make sense for a graph to look 
that way? Is it possible for two different looking graphs to represent the same situation? 

8. Repeat 2-7 for a new Cartesian graph representing the same situation, with attributes on 
different axes. 

Design Principles Emerging from the Development of the Techtivities 

Increase Accessibility to Expand Students’ Opportunities to Employ Covariational 
Reasoning 

Kaput (1994) argued that technology could provide students opportunities to investigate 
areas of mathematics once reserved only for students at more advanced levels. Covariational 
reasoning is a critical form of reasoning that cannot be reserved only for students at the upper 
levels of undergraduate mathematics. At CU Denver, the student population is becoming 
increasingly diverse. In 2016, 57% of new freshman, and overall 43% of undergraduate students 
identified as students of color (Williams, 2016). Across Spring and Fall 2016, 70% of students 
enrolled in College Algebra at CU Denver self-identified as students of color. By designing our 
Techtivities in Desmos, we increase access for undergraduate students, as well as their 
instructors. We designed the Techtivities so that students could work in ways that are self-paced, 
or with direction from their instructors. Furthermore, students and educators have free online 
access to the suite of Techtivities, to use as a just-in-time curricular resource or as an embedded 
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component of a course, allowing for entire cohorts of students to have opportunities to employ 
covariational reasoning. 

Leverage Domain Specific Theories in Mathematics Education to Design Task Components 
By drawing on Thompson’s theory of quantitative reasoning, we augment the design of the 

Techtivities by infusing what we have learned from researchers focusing on students’ 
conceptions. Specific to our focus on covariational reasoning, we leveraged Thompson’s theory 
of quantitative reasoning in three ways. First, provide opportunities for students to conceive of 
attributes as capable of varying and possible to measure (Table 1, Items 1-3). Second, provide 
opportunities for students to discern a relationship between attributes, or put another way, to 
discern covariation (Table 1, Items 4-7). Third, by representing attributes on different axes, 
provide opportunities for students to conceive of a graph as representing a relationship between 
attributes capable of varying and possible to measure (Table 1, Item 8). 

Network Theories of Different Grain Sizes to Design Both Within and Across Tasks 
Networking theories of different grain sizes, we were able to design both within and across 

the Techtivities (see also Johnson, McClintock, Hornbein, et al., 2017; Johnson & McClintock, 
in press). Thompson’s theory of quantitative reasoning informed our selection of attributes 
within each Techtivity and across the suite of techtivities. In the Cannon Man Techtivity, total 
distance traveled is monotonically increasing. In another Techtivity, we include attributes such 
that neither is monotonically increasing or decreasing (see also Moore et al., 2016). Marton’s 
variation theory informed the sequencing of design across sections of individual Techtivities as 
well as across the suite of Techtivities. Individual Techtivities include variation in each attribute, 
then variation in both attributes. The suite of Techtivities provide different backgrounds. 

Discussion 
Despite the existence of some innovative learning materials for Calculus and Precalculus 

students (e.g., Carlson, Oehrtman, & Moore, 2010; Thompson & Ashbrook, 2016a), we argue 
that a broader range of university students need access to such materials. We contend there is an 
opportunity gap for university students to develop and employ covariational reasoning. We view 
this opportunity gap to be particularly problematic for students enrolled in College Algebra. 
Furthermore, increasing numbers of College algebra students identify as students of color, and 
university College Algebra courses have had low success rates (e.g., Gordon, 2008; Herriot & 
Dunbar, 2009). By developing a suite of Techtivities designed to promote College Algebra 
students’ covariational reasoning, we intend to address this opportunity gap. 

Broadly, a dual commitment has motivated our design decisions when developing the 
Techtivities. We intend to increase students’ access to opportunities to employ covariational 
reasoning, and expand learning opportunities through the development of free, accessible, digital 
media activities that link dynamic animations with graphs. By attending simultaneously to 
disciplinary and technical barriers, while foregrounding the expansion of learning opportunities 
for nondominant students at CU Denver, we make explicit our “researcher positionality” 
(Aguirre et al., 2017), acknowledging that mathematics education research is both a political and 
equity-oriented endeavor. 
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